NOTE

Selective Ethane Formation by CO Hydrogenation on Inorganic Oxide-Attached Mo(II)-Monomer Catalysts

It has been demonstrated that specific supported metal catalysts can give particular products with high selectivities from syngas (CO and H₂); e.g., Co-Cd/A-zeolite (1) yields selectively propene (ca. 100%), Fe/graphite/K-naphthalenide (2) unusually produces acetylene (ca. 95% selectivity), and Cr/Zn/ZSM-5 (3) converts carbon monoxide to ethane with 83% selectivity. These phenomena were of great interest from viewpoints of chemical source problems as well as reaction mechanisms in pure C₁ chemistry although real under-

standing of catalysis on those multicomponent catalysts is open to future studies. In the present paper we report a selective ethane formation by CO hydrogenation on well-characterized one-component supported catalysts with molybdenum(II)-monomers which were prepared by attaching $Mo(\pi-C_3H_5)_4$ onto SiO_2 , Al_2O_3 , or $SiO_2 \cdot Al_2O_3$ followed by chemical treatments.

The SiO₂-, γ -Al₂O₃-, and SiO₂ · Al₂O₃-attached molybdenum-monomer catalysts were prepared in a similar manner to that previously reported (4, 5) as follows:

Mo
$$(\pi^{-C_3H_5})_4$$
 + OH OH 273-293 K, C_3H_5 $C_3H_$

The Mo(II)-monomers (b) and the Mo(IV)-monomers (c) used as catalysts were obtained by the quantitative reduction of the dioxomolybdenum(VI)-monomers (d) with H_2 at 860 K for 2 h (SiO₂) or 6 h (Al₂O₃ and SiO₂ · Al₂O₃), and by the stoichiometric oxidation of the (b) thus obtained with O₂ at 273 K for 30 min, respectively. SiO₂, γ -Al₂O₃, and SiO₂ · Al₂O₃ (Al₂O₃ content:

13%) were all commercially available. The Mo loadings in these catalysts were determined to be 1.5-1.9 wt% as Mo/support by chemical analysis.

The catalytic hydrogenation of carbon monoxide was carried out in a closed circulating system with a U-shaped liquid-N₂ trap (circulation rate: 90 cm³ min⁻¹) under reduced pressures (typically; CO = 150

614 NOTE

Torr, $H_2 = 300$ Torr, 1 Torr = 133.3 Pa) using 0.7 g of attached Mo catalysts. The reaction products trapped and in gas phase were analyzed at every 10- to 30-min intervals by gas chromatography using a 5A molecular sieve column (1.5 m) (H_2 , CH_4 , CO), a VZ-10 column (2 m) (C_2 - C_5 and C_2 - C_5), a Deactigel (SiO₂) column (1 m) (C_2 , C_2 -, CO_2), and a series column of PEG 1500/Celite (4 m) and DOP/Chromosorb (1 m) (C_5 - C_8 , C_5 - C_8 -, oxygenated compounds).

Murchison (6) demonstrated that molybdenum-based catalysts on high-surfacearea supports like Al₂O₃ and particularly carbon can produce about 70% of the hydrocarbon products as LPG, most of which is ethane and propane, in the hydrogenation of carbon monoxide under suitable conditions. He also found that a carbon-supported Mo catalyst shows a very low rate of coking and high sulfur tolerance. The conventional Mo catalysts prepared by an impregnation method produced hydrocarbons and carbon dioxides as shown in Table 1 where the SiO₂-supported Mo catalyst gave 73% of the hydrocarbons produced as C₂-C₃ components under the conditions of CO = 150 Torr and H_2 = 300 Torr at 523 K similarly to 70% of LPG fraction reported by Murchison (6) although the reaction conditions were much different with each other. The Al₂O₃- and SiO₂ · Al₂O₃-supported Mo catalysts yielded mainly methane, where C2-C3 components were only 38-53%. The Fischer-Tropsch (F-T) reactions on the impregnation catalysts using

TABLE 1

Activities and Selectivities of Attached and Impregnation Mo Catalysts for CO Hydrogenation at 523 Ka

Catalysts	Supports	Rates ^b	Selectivities, %		Distributions, %				
			H.C.	CO ₂	C ₁	C ₂	C ₂ [±]	C ₃	C ₃
Mo	SiO ₂	41.9	71.6	28.4	13.1	68.9	0	14.4	3.7
Mo=0	SiO ₂	Very low	National States	addition.		_			
Impreg.	SiO ₂	10.4	61.6	38.4	27.4	41.8	11.5	7.3	10.3
Mo	Al_2O_3	53.1	75.4	12.8	59.0	30.6	0.9	7.3	2.2
Mo=0	$\mathrm{Al_2O_3}$	32.5	85.2	5.8	61.8	29.9	0	5.3	3.0
Impreg.	Al ₂ O ₃	17.5	58.3	27.9	74.1	16.6	0	7.0	2.2
Mo	$SiO_2 \cdot Al_2O_3$	57.9	66.6	23.9	37.3	51.1	1.5	9.5	0.7
Impreg.	$SiO_2 \cdot Al_2O_3$	14.8	83.3	16.7	46.9	25.3	3.9	4.5	2.7

^a CO: $H_2 = 150:300$ Torr, 523 K.

 $^{^{}b}$ 10⁻⁵ mol h⁻¹ (g Mo)⁻¹, Mo/SiO₂ = 1.7 wt%, Mo/Al₂O₃ = 1.5 wt%, Mo/SiO₂ · Al₂O₃ = 1.9 wt%.

NOTE 615

SiO₂, γ -Al₂O₃, or SiO₂ · Al₂O₃ supports were not selective and the reaction rates were generally low, the activities decreasing in the order for supports, Al₂O₃ > SiO₂ · Al₂O₃ > SiO₂.

In contrast to these traditional Mo catalysts, the Mo(II)-monomers (b) attached on SiO₂ were found to produce ethane at a high selectivity of ca. 70% as shown in Table 1, when the sum of C₂ and C₃ components attained to 87% of the hydrocarbons formed. Higher hydrocarbons than C₄ were negligible or never detected even by flashheating to 673 K after the F-T reactions. The $SiO_2 \cdot Al_2O_3$ -attached Mo(II) catalyst also gave mainly ethane (51%) in contrast to the low selectivity (25%) to ethane for the impregnation catalyst in Table 1. The surface hydroxyl groups of the SiO₂ · Al₂O₃ employed may be located on mainly Si atoms according to NMR studies (7). The local structure of the Mo(II) species (b) on $SiO_2 \cdot Al_2O_3$ may partially be similar to that of the Mo(II) species (b) attached to SiO₂ surface, but it would be affected electronically and sterically by the presence of Al ions. Actually, the catalytic activity increased and the ethane selectivity decreased compared with the SiO₂-attached catalyst (Table 1). On Al₂O₃ support neither Mo(II) (b) nor oxo-Mo(IV) (c) species were effective to C_2 - C_3 formation. The selectivity to ethane on the attached catalysts was about twofold larger in comparison with the impregnation catalysts. The catalytic activities of the three attached Mo(II) catalysts were 3-4 times higher than those of the corresponding impregnation catalysts. Consequently, the SiO₂-attached Mo(II)monomers (b) provide an efficient onecomponent catalyst for selective ethane formation from syngas.

REFERENCES

- Fraenkel, D., and Gates, B. C., J. Amer. Chem. Soc. 102, 2478 (1980).
- Jones, W., Schlögel, R., and Thomas, J. M., J. Chem. Soc. Chem. Commun., 464 (1984).
- Chang, C. D., Miale, J. N., and Socha, R. F., J. Catal. 90, 84 (1984).
- 4. Yermakov, Yu. I., Catal. Rev. 13, 77 (1976).
- Iwasawa, Y., Nakano, Y., and Ogasawara, S., J. Chem. Soc. Faraday Trans. 1 74, 2968 (1978); Iwasawa, Y., Ogasawara, S., and Soma, M., Chem. Lett., 1039 (1978); Iwasawa, Y., and Ogasawara, S., J. Chem. Soc. Faraday Trans. 1 75, 1465 (1979); Iwasawa, Y., Nakamura, T., Takamatsu, K., and Ogasawara, S., J. Chem. Soc. Faraday Trans. 1 76, 939 (1980); Iwasawa, Y., Ichinose, H., Ogasawara, S., and Soma, M., J. Chem. Soc. Faraday Trans. 1 77, 1763 (1981); Iwasawa, Y., Kubo, H., and Hamamura, H., J. Mol. Catal. 28, 191 (1985).
- Murchison, C. B., in "Proceedings, 4th International Climax Mo Conference, Colorado, 1982," p. 197.
- Schreiber, L. B., and Vaughan, R. W., J. Catal. 40, 226 (1975); Hall, W. K., Leftin, H. P., Cheselske, F. J., and O'Reilly, D. E., J. Catal. 2, 506 (1963).

Y. IWASAWA

Department of Chemistry Faculty of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo 113, Japan

N. Ito

Department of Applied Chemistry Faculty of Engineering Yokohama National University Hodogaya-ku Yokohama 240, Japan

Received June 7, 1985